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Setting

Ω — a bounded Lipschitz domain in Rm

(N , g) — n-dim., complete Riemannian manifold embedded in RN

given a subspace X(Ω,RN ) of L1
loc(Ω,RN ) we denote

X(Ω,N ) = {u ∈ X(Ω,RN ) s. t. u(x) ∈ N for a. e. x ∈ N}

1-harmonic map flow — L2-gradient flow of constrained total variation
functional, given for u ∈ C1(Ω,N ) by

TV NΩ (u) =

∫
Ω
|∇u|
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Setting — manifold domain

(M, γ) — compact Riemannian manifold

given a subspace X(M,RN ) of L1
loc(M,RN ) we denote

X(M,N ) = {u ∈ X(M,RN ) s. t. u(x) ∈ N for a. e. x ∈M}

for u ∈ C1(M,N ) the total variation is now given by

TV NM(u) =

∫
M
|∇u|γ =

∫
M

(
γαβuxαuxβ

) 1
2
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p-harmonic map flows

for p > 1, p-harmonic flow — L2-gradient flow of 1
p

∫
M |∇u|

p
γ

formally given by equation (in normal coordinates onM)

ut = πN (u)div(|∇u|p−2∇u)

or equivalently

ut = div(|∇u|p−2∇u) +AN (u)(uxi ,uxi) (pHMFE)

energy inequality

1

p

∫
M
|∇u|pγ +

∫ t

0

∫
M
|ut|2γ ≤

1

p

∫
M
|∇u0|pγ (EI)
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Existence of harmonic map flows (p = 2)

M, N – compact, RN — Riemann curvature tensor of N

Theorem (Eells-Sampson, 1964)
Let p = 2 and u0 ∈ C∞(M,N ). If RN ≤ 0, unique smooth harmonic
map flow u starting with u0 exists for all t > 0. There exists a
sequence (ti) such that (u(ti)) converges uniformly to a harmonic
map u∗.

Theorem (Chen-Struwe, 1988)
Let p = 2. For any u0 ∈ C∞(M,N ) there exists a global weak
solution to (pHMFE) with initial datum u0 satisfying (EI). There exists
a sequence (ti) such that (u(ti)) converges weakly in W 1,2(M,N )
to a weakly harmonic map u∗.
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p 6= 2, part I: Hungerbühler

Theorem (Hungerbühler, 1997)
Let p = m, u0 ∈W 1,p(M,N ). There exists a global weak solution to
(pHMFE) with initial datum u0 satisfying (EI). This solution is regular
except finitely many time instances. There is at most one solution
satisfying ∇u ∈ L∞(]0,∞[×M).

Theorem (Hungerbühler, 1996)
Let N be a homogeneous space and let u0 ∈W 1,p(M,N ). There
exists a global weak solution to (pHMFE) with initial datum u0

satisfying (EI).
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p 6= 2, part 2: Fardoun & Regbaoui

Theorem (Fardoun-Regbaoui, 2002-2003)
Let u0 ∈ C2+α(M,N ). If RN ≤ 0 or

∫
M |∇u|

p
γ is small enough,

there exists a regular global weak solution to (pHMFE) with initial
datum u0. There exists a sequence (ti) such that (u(ti)) converges
uniformly to a p-harmonic map u∗.
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Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:

Ω — a rectangle/interval/box

examples of N :
• S2 — color component of an image
• R2 × S1 — luminance-chromacity-hue space
• SO(3) or SE(3) — orientations of objects (e. g. camera

trajectories)
• SPD(3) — diffusion tensor space
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The Euclidean case N = Rn = RN

TVΩ(u) =

∫
Ω
|∇u| = sup

{∫
Ω
u · divϕ : ϕ ∈ C1

c (Ω), |ϕ| ≤ 1

}

TVΩ — convex, lower semicontinuous functional on L2(Ω)

given u0 ∈ BV (Ω) there exists a global in time L2-gradient flow
(steepest descent curve) u satisfying for t > 0

ut ∈ −∂TV (u)

u satisfies energy inequality∫
Ω
|∇u(t, ·)|+

∫ t

0

∫
Ω
u2
t ≤

∫
Ω
|∇u0|

for t > 0

9 of 30



The Euclidean case N = Rn = RN

TVΩ(u) =

∫
Ω
|∇u| = sup

{∫
Ω
u · divϕ : ϕ ∈ C1

c (Ω), |ϕ| ≤ 1

}
TVΩ — convex, lower semicontinuous functional on L2(Ω)

given u0 ∈ BV (Ω) there exists a global in time L2-gradient flow
(steepest descent curve) u satisfying for t > 0

ut ∈ −∂TV (u)

u satisfies energy inequality∫
Ω
|∇u(t, ·)|+

∫ t

0

∫
Ω
u2
t ≤

∫
Ω
|∇u0|

for t > 0

9 of 30



The Euclidean case N = Rn = RN

TVΩ(u) =

∫
Ω
|∇u| = sup

{∫
Ω
u · divϕ : ϕ ∈ C1

c (Ω), |ϕ| ≤ 1

}
TVΩ — convex, lower semicontinuous functional on L2(Ω)

given u0 ∈ BV (Ω) there exists a global in time L2-gradient flow
(steepest descent curve) u satisfying for t > 0

ut ∈ −∂TV (u)

u satisfies energy inequality∫
Ω
|∇u(t, ·)|+

∫ t

0

∫
Ω
u2
t ≤

∫
Ω
|∇u0|

for t > 0

9 of 30



The Euclidean case N = Rn = RN

TVΩ(u) =

∫
Ω
|∇u| = sup

{∫
Ω
u · divϕ : ϕ ∈ C1

c (Ω), |ϕ| ≤ 1

}
TVΩ — convex, lower semicontinuous functional on L2(Ω)

given u0 ∈ BV (Ω) there exists a global in time L2-gradient flow
(steepest descent curve) u satisfying for t > 0

ut ∈ −∂TV (u)

u satisfies energy inequality∫
Ω
|∇u(t, ·)|+

∫ t

0

∫
Ω
u2
t ≤

∫
Ω
|∇u0|

for t > 0
9 of 30



The Euclidean case N = Rn = RN

Theorem (Andreu-Ballester-Caselles-Mazon, 2000)
u ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;BV (Ω)) is a steepest descent curve
of TVΩ iff there exists Z ∈ L∞(]0, T [×Ω) with divZ ∈ L2(]0, T [×Ω)
such that

ut = divZ a. e. in Ω,

(∇u,Z) = |∇u| as measures on Ω,

|Z| ≤ 1 a. e. in Ω

Z · νΩ = 0 a. e. on ∂Ω

for a. e. t ∈]0, T [

10 of 30



Regular 1-harmonic map flow

formally

ut = πN (u)div ∇u|∇u|

(
+ ∇u

|∇u| · ν
Ω = 0

)
(1HMFE)

Definition
We say that u ∈W 1,2(]0, T [×Ω,N ) with ∇u ∈ L∞(]0, T [×Ω) is a
regular solution to (1HMFE) if there exists Z ∈ L∞(]0, T [×Ω) such
that

ut = divZ,

Z ∈ TuN , |Z| ≤ 1, Z = ∇u
|∇u| if ∇u 6= 0 a. e. in ]0, T [×Ω,

Z · νΩ = 0 a. e. on ]0, T [×∂Ω
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Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)
Suppose that N is compact, Ω = Tm, u0 ∈ C2+α(Ω,N ) and
‖∇u0‖Lp(Ω) is small enough for some p > 1. There exists a
local-in-time regular solution to (1HMFE) with initial datum u0

satisfying (EI).

Theorem (Giacomelli-Ł-Moll, preprint 2017)
Suppose that N is a closed submanifold in RN and Ω is a convex
domain in Rm. If u0 ∈W 1,∞(Ω,N ), there exists a unique
local-in-time regular solution to (1HMFE) with initial datum u0

satisfying (EI).

If RN ≤ 0 or the image of the datum is small enough, the solution is
global and becomes constant in finite time.
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Sketch of proof

• approximation with gradient flow of
∫

(ε2 + |∇u|2)
1
2

• totally geodesic metric h on RN for N :
◦ h restricted to N coincides with g
◦ h coincides with the Euclidean metric outside a neighbourhood of N
◦ there exists a neighbourhood U of N in RN and an involution i of U

that is isometric with respect to h

• local existence for approximation via a result by
Acquistapace-Terreni
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Sketch of proof

• Bochner’s formula

1

2

d

dt
|∇u|2 = div(uxi ·Zxi)− (πN (u)uxixj ) ·Zi,xj

+Zi · RN (u)(uxi ,uxj )uxj

• due to convexity of Ω, from Bochner’s formula we get uniform
estimate

1

p

d

dt

∫
Ω
|∇u|p ≤ C(N )

∫
Ω
|∇u|p+1,

=⇒ d

dt
‖∇u‖L∞(Ω) ≤ C(N )‖∇u‖2L∞(Ω)

• standard limit passage
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Role of convexity

suppose RN ≤ 0 (e. g. N = RN )

if Ω – convex, then

‖∇u(t, ·)‖Lp(Ω) ≤ ‖∇u0‖Lp(Ω)

for Lipschitz (smooth) non-convex Ω, is it still true that

u0 ∈W 1,p(Ω) =⇒ u(t, ·) ∈W 1,p(Ω)?

for the gradient flow of
∫
|ux|+ |uy| there is a non-convex polygon Ω

and u0 ∈W 1,∞(Ω) such that u(t, ·) 6∈W 1,1
loc (Ω) for small t > 0

(Ł-Moll-Mucha, 2017)
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Manifold domain

Theorem (Giacomelli-Ł-Moll, preprint 2017)
Suppose that N is a closed submanifold in RN andM is a compact,
orientable Riemannian manifold. If u0 ∈W 1,∞(M,N ), there exists a
unique local-in-time regular solution to (1HMFE) with initial datum u0

satisfying (EI).

If RN ≤ 0, the solution is global. If furthermore RicM ≥ 0, the
solution converges uniformly to a 1-harmonic map.
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BV solutions (N - hyperoctant)

Theorem (Giacomelli-Mazon-Moll, 2013-2014)
Let N be a hyperoctant of Sn and u0 ∈ BV (Ω,N ). There exists a
solution to

ut = divZ + ug|∇u| as measures on Ω,

ut ∧ u = div(Z ∧ u) a. e. on Ω,

|Z| ≤ 1, Z ∈ TuN a. e. on Ω,

Z · νΩ = 0 a. e. on ∂Ω

in a. e. t ∈]0, T [ for arbitrarily large T > 0.

there holds (∇u,Z) = |u∗||∇u| as measures for a. e. t ∈]0, T [.
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m = 1 — localization of energy inequality

Ω = I =]0, 1[

Theorem (Giacomelli-Ł, preprint 2018)
Let u ∈ H1(0,∞;L2(I)n) ∩ L∞(0,∞;BV (I)n) be the steepest
descent curve of TVI emanating from u0 ∈ BV (I)n. There holds

|ux(t, ·)| ≤ |u0,x|

as measures for t > 0.
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Sketch of proof

• approximate with gradient flow of
∫
I(ε

2 + |ux|2)
1
2 , mollify u0

• take smooth cutoff function ϕ supported in BR(x0) with ϕ = 1 in
Br(x0)

• for p > 1 calculate d
dt

∫
ϕ2(ε2 + |ux|2)

p
2

• estimate

1

p

∫
Br(x0)

(ε2 + ux(t, ·)2)
p
2 ≤ 1

p

∫
BR(x0)

(ε2 + u2
0,x)

p
2 +

εp−1

p− 1

t

R− r

• pass to the limit ε→ 0+, then p→ 1+, R→ r+, relax initial datum
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Completely local estimates

Theorem (Bonforte-Figalli, 2012)
Let u be a solution to the scalar total variaton flow with initial datum
u0 ∈ BV (I). Then |ux|({x0}) ≤ |u0,x|({x0}) for any x0 ∈ Ju0 and
oscAu ≤ oscAu0 on any interval A ⊂ I where u0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)
Let Ω be an open domain in Rn and let u0 ∈ L2(Ω,Rn) be such that
divu0 is a Radon measure on Ω. The L2-gradient flow of functional∫

Ω |divu| satisfies (divu(t, ·))± ≤ (divu0)±.

non-increase of jumps for the scalar total variation flow
(Caselles-Jalalzai-Novaga, 2013)

for a solution u to the scalar TV flow with initial datum u0 ∈ BV (Ω),
does |∇su(t, ·)| ≤ |∇su0|?

20 of 30



Completely local estimates

Theorem (Bonforte-Figalli, 2012)
Let u be a solution to the scalar total variaton flow with initial datum
u0 ∈ BV (I). Then |ux|({x0}) ≤ |u0,x|({x0}) for any x0 ∈ Ju0 and
oscAu ≤ oscAu0 on any interval A ⊂ I where u0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)
Let Ω be an open domain in Rn and let u0 ∈ L2(Ω,Rn) be such that
divu0 is a Radon measure on Ω. The L2-gradient flow of functional∫

Ω |divu| satisfies (divu(t, ·))± ≤ (divu0)±.

non-increase of jumps for the scalar total variation flow
(Caselles-Jalalzai-Novaga, 2013)

for a solution u to the scalar TV flow with initial datum u0 ∈ BV (Ω),
does |∇su(t, ·)| ≤ |∇su0|?

20 of 30



Completely local estimates

Theorem (Bonforte-Figalli, 2012)
Let u be a solution to the scalar total variaton flow with initial datum
u0 ∈ BV (I). Then |ux|({x0}) ≤ |u0,x|({x0}) for any x0 ∈ Ju0 and
oscAu ≤ oscAu0 on any interval A ⊂ I where u0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)
Let Ω be an open domain in Rn and let u0 ∈ L2(Ω,Rn) be such that
divu0 is a Radon measure on Ω. The L2-gradient flow of functional∫

Ω |divu| satisfies (divu(t, ·))± ≤ (divu0)±.

non-increase of jumps for the scalar total variation flow
(Caselles-Jalalzai-Novaga, 2013)

for a solution u to the scalar TV flow with initial datum u0 ∈ BV (Ω),
does |∇su(t, ·)| ≤ |∇su0|?

20 of 30



Completely local estimates

Theorem (Bonforte-Figalli, 2012)
Let u be a solution to the scalar total variaton flow with initial datum
u0 ∈ BV (I). Then |ux|({x0}) ≤ |u0,x|({x0}) for any x0 ∈ Ju0 and
oscAu ≤ oscAu0 on any interval A ⊂ I where u0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)
Let Ω be an open domain in Rn and let u0 ∈ L2(Ω,Rn) be such that
divu0 is a Radon measure on Ω. The L2-gradient flow of functional∫

Ω |divu| satisfies (divu(t, ·))± ≤ (divu0)±.

non-increase of jumps for the scalar total variation flow
(Caselles-Jalalzai-Novaga, 2013)

for a solution u to the scalar TV flow with initial datum u0 ∈ BV (Ω),
does |∇su(t, ·)| ≤ |∇su0|?

20 of 30



A note about TV flow for m = 1

take u ∈ BV (I)n, Z ∈W 1,1(I)n with |Z| ≤ 1 a. e.

the condition (ux,Z) = |ux| is equivalent to

Z = ux
|ux| |ux| − a. e. in I

(a measure derivative)
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1-harmonic map flow for m = 1

Definition
Suppose that u ∈W 1,2(0, T ;L2(I,N )) ∩ L∞(0, T ;BV (I,N )) and
distg(u−,u+) < injN on Ju.

We say that u is a solution to (1HMFE) if there exists
Z ∈ L∞(]0, T [×I)n such that a. e. in ]0, T [ there holds

ut = πN (u)Zx a. e. on I,

Z ∈ TuN , |Z| ≤ 1 a. e. on I,

Z = ux
|ux| |ux| − a. e. on I \ Ju,

Z− = T (u−),Z+ = T (u+) on Ju,

Z · νΩ = 0 on ∂I
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1-harmonic flow for m = 1

Theorem (Giacomelli-Ł, in preparation)
Let u0 ∈ BV (I,N ) satisfy distg(u

−
0 ,u

+
0 ) < R∗ on Ju, R∗ = R∗(N ).

For any T > 0 there exists a solution to (1HMFE) starting with u0.
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Relaxed TV

for u ∈ BV (I,N ), define

TVg(u) =

inf

{
lim inf

∫
I
|ukx| : (uk) ⊂W 1,∞(I,N ),uk

∗
⇀ u in BV (I,N )

}

there holds
TVg(u) =

∫
I
|ux|g,

where
|ux|g = |ux|

¬
I \ Ju + dist g(u−,u+)H0 ¬ Ju

(Giaquinta-Mucci, 2006)
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Difficulties

• Z and ux not in complementary spaces

• in the expanded form

ut = Zx +AN (Z,ux)

the nonlinear term depends on Z (no sphere trick)

• lack of strong convergence of Z — cannot pass to the limit
timeslice-wise
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Sketch of proof

• due to symmetry of RN , ux · RN (ux,ux)ux = 0

• for u0 ∈W 1,∞(I,N ), there exists a unique global regular solution
to the 1-harmonic flow independently of N

• approximate with regular solutions

• completely local estimate |ux(t, ·)|g ≤ |u0,x|g gives a good uniform
bound and allows to calculate ux

|u0,x| ,
|ux|
|u0,x| outside of Ju0

• calculate ux
|ux| by chain rule
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Sketch of proof (jump part)

• Fermi coordinates in a neighborhood of the geodesic along the
jump: on the geodesic g̃ij = δij , g̃ij,k = 0

• in coordinates
ũit = z̃ix + Γ̃ijk(u) z̃j ũkx

• take ϕ ≥ 0 — cutoff centered around the jump:∫
I
|ux|ϕ =

∫
I
g̃ij(u) z̃i ũjxϕ = −

∫
I
g̃ij,k(u) ũkx z̃

i ũjϕ

−
∫
I
g̃ij(u) ũit ũ

jϕ+

∫
I
g̃ij(u) Γ̃ijk(u) z̃j ũkx ũ

jϕ−
∫
I
g̃ij(u) z̃i ũjϕx
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∫
I
g̃ij,k(u) ũkx z̃
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Sketch of proof (jump part)

• slice-wise estimate

dist(u(t, x), γu(t,a),u(t,b)) ≤ C
∫ b

a
|ut(t, ·)|

for x ∈]a, b[, t > 0, where γu(t,a),u(t,b) is the minimal geodesic
joining u(t, a) and u(t, b)

• maximum principle in a convex ball
• relaxation estimate

lim inf

∫
I
|ukx|ϕ ≥

∫
I
|ux|gϕ

for the approximating sequence (uk) ⊂W 1,∞(I,N ) converging to
u weakly in BV (I,N )

28 of 30



Sketch of proof (jump part)

• slice-wise estimate

dist(u(t, x), γu(t,a),u(t,b)) ≤ C
∫ b

a
|ut(t, ·)|

for x ∈]a, b[, t > 0, where γu(t,a),u(t,b) is the minimal geodesic
joining u(t, a) and u(t, b)

• maximum principle in a convex ball

• relaxation estimate

lim inf

∫
I
|ukx|ϕ ≥

∫
I
|ux|gϕ

for the approximating sequence (uk) ⊂W 1,∞(I,N ) converging to
u weakly in BV (I,N )

28 of 30



Sketch of proof (jump part)

• slice-wise estimate

dist(u(t, x), γu(t,a),u(t,b)) ≤ C
∫ b

a
|ut(t, ·)|

for x ∈]a, b[, t > 0, where γu(t,a),u(t,b) is the minimal geodesic
joining u(t, a) and u(t, b)

• maximum principle in a convex ball
• relaxation estimate

lim inf

∫
I
|ukx|ϕ ≥

∫
I
|ux|gϕ

for the approximating sequence (uk) ⊂W 1,∞(I,N ) converging to
u weakly in BV (I,N )

28 of 30



Other boundary conditions

• can be transferred to periodic or Dirichlet b. c.

• no finite stopping time for Dirichlet

• counterexample by Giga-Kuroda, 2015 for N = S2

• easy counterexample for N = R2
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Thank you for your attention!
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